Contformational Control of Cas Endonucleases by CRISPR Hybrid RNA-
DNA Guides Mitigates Oft-Target Activity in T Cell

Paul Donohoue', Martin Pacesa?, Elaine Lau'3, Bastien Vidal'.'2, Matthew J. Irby!1!, David B. Nyer!, Tomer Rotstein'4, Lynda Banh'13, Mckenzi S. Toh'>, Jason Gibson'14,
Bryan Kohrs!, Kevin Baek'®, Arthur L.G. Owen', Euan M. Slorach'’, Megan van Overbeek':8, Christopher K. Fuller', Andrew P. May'”, Martin Jinek?, Peter Cameron!.10

CARIBOU

BIOSCIENCES

4 \ ( N
Overview Tunable chRDNA activity across a broad collection of on- and oftf-target sites Engineering chRDNA guides for the Cas12a platform
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