

A first-in-human Phase 1, multicenter, open-label study of CB-012, a next-generation CRISPR-edited allogeneic anti-CLL-1 CAR-T cell therapy for adults with relapsed/refractory acute myeloid leukemia (AMpLify)

Naval G. Daver,¹ Abhishek Maiti,¹ David A. Sallman,² Gail J. Roboz,³ Melhem M. Solh,⁴ Filippo Milano,⁵ Stephen A. Strickland,⁶ Alireza Eghtedar,⁷ Steven B. Kanner,⁸ Guy Ledergor,⁸ Donna Marcy,⁸ Elizabeth Garner,⁸ Brian J. Francica,⁸ McKay Shaw,⁸ Kalin Bird,⁸ Enrique Zudaire,⁸ Socorro Portella,⁸ Pankit Vachhani,⁹ Jae H. Park¹⁰

¹MD Anderson Cancer Institute, Houston, Texas, USA; ²Moffitt Cancer Center, Tampa, FL, USA; ⁴The Bone Marrow and Transplant Group of Georgia, Atlanta, Georgia, USA; ⁴The Bone Marrow and Transplant Group of Georgia, Atlanta, Georgia, USA; ⁴The Bone Marrow and Transplant Group of Georgia, Atlanta, Georgia, USA; ⁴The Bone Marrow and Transplant Group of Georgia, Atlanta, Georgia, USA; ⁴The Bone Marrow and Transplant Group of Georgia, Atlanta, Georgia, USA; ⁴The Bone Marrow and Transplant Group of Georgia, Atlanta, Georgia, USA; ⁴The Bone Marrow and Transplant Group of Georgia, Atlanta, Georgia, USA; ⁴The Bone Marrow and Transplant Group of Georgia, Atlanta, Georgia, USA; ⁴The Bone Marrow and Transplant Group of Georgia, Atlanta, Georgia, USA; ⁴The Bone Marrow and Transplant Group of Georgia, Atlanta, Georgia, USA; ⁴The Bone Marrow and Transplant Group of Georgia, Atlanta, Georgia, USA; ⁴The Bone Marrow and Transplant Group of Georgia, Atlanta, Georgia, USA; ⁴The Bone Marrow and Transplant Group of Georgia, Atlanta, Georgia, USA; ⁴The Bone Marrow and Transplant Group of Georgia, Atlanta, Georgia, USA; ⁴The Bone Marrow and Transplant Group of Georgia, Atlanta, Georgia, USA; ⁴The Bone Marrow and Transplant Group of Georgia, Atlanta, Georgia, USA; ⁴The Bone Marrow and Transplant Group of Georgia, Atlanta, Georgia, USA; ⁴The Bone Marrow and Transplant Group of Georgia, Atlanta, Georgia, USA; ⁴The Bone Marrow and Transplant Group of Georgia, Atlanta, Georgia, USA; ⁴The Bone Marrow and Transplant Group of Georgia, Atlanta, Georgia, USA; ⁴The Bone Marrow and Transplant Group of Georgia, Atlanta, Georgia, USA; ⁴The Bone Marrow and Transplant Group of Georgia, Atlanta, Georgia, USA; ⁴The Bone Marrow and Transplant Group of Georgia, Atlanta, Georgia, USA; ⁴The Bone Marrow and Transplant Group of Georgia, Atlanta, Georgia, USA; ⁴The Bone Marrow and Transplant Group of Georgia, Atlanta, Georgia, USA; ⁴The Bone Marrow and Transplant Group of Georgia, Atlanta, Georgia, USA; ⁵Fred Hutchinson Cancer Center, Seattle, Washington, USA; ⁶SCRI at TriStar Centennial, Nashville, Tennessee, USA; ⁷The Colorado Blood Cancer Institute, Denver, Colorado, USA; ⁸Caribou Biosciences, Inc., Berkeley, California, USA; ⁹University of Alabama at Birmingham, Birmingham, Alabama, USA; ¹⁰Memorial Sloan Kettering Cancer Center, New York, New York, USA

Background

- In acute myeloid leukemia (AML), a challenge in the development of CAR-T cell therapies has been the limitation of suitable target antigens since many are also expressed on hematopoietic stem cells and progenitor cells (HSPCs)
- C-type lectin-like molecule-1 (CLL-1) has emerged as an attractive therapeutic target due to its expression on AML mature blasts and leukemic stem cells and its absence on HSPCs¹
- CB-012 is an allogeneic CAR-T cell therapy that targets CLL-1
- In murine xenograft models of AML, CB-012 significantly reduced tumor burden and increased the survival of mice bearing CLL-1⁺ tumors²

¹ Daver N, et al. *Leukemia*, 2021;35(7):1843-1863. https://doi.org/10.1038/s41375-021-01253-x. ² Francica B, et al. 2024 American Association for Cancer Research Annual Meeting; April 9, 2024; San Diego, CA. Abstract 6323. https://investor.cariboubio.com/static-files/306bbc8d-d94f-461a-847d-1d426cf76e8f.

AMpLify trial objectives

Dose Escalation (Phase 1, Part A)

- Primary Objectives: - Safety and tolerability of CB-012 therapy in patients with r/r AML (de novo or secondary) - MTD and/or RDE
- Secondary Objectives: - PK/PD of CB-012 - Preliminary antitumor activity of CB-012 in patients with r/r or MRD-positive AML

Dose Expansion (Phase 1, Part B)

• Primary Objectives:

- Antitumor response of CB-012 in patients with r/r or MRD-positive AML

Secondary Objectives:

• ECOG performance status of 0 or 1

- AST and ALT \leq 3.0 \times ULN

- Total bilirubin $\leq 2.0 \times ULN^{\ddagger}$

• Clinical laboratory values during screening:

- Creatinine clearance \geq 45 mL/min/1.73 m²

- Efficacy of CB-012 in patients with r/r or MRD-positive AML - Safety and tolerability of CB-012 therapy in patients with r/r or MRD-positive AML - PK/PD of CB-012

CB-012: anti-CLL-1 allogeneic CAR-T cell therapy

AMpLify key inclusion criteria

with a PD-1 knockout and immune cloaking

Armored with 5 genome edits

TRAC gene knockout (KO) • Eliminates TCR expression, reduces GvHD risk

Human anti-CLL-1 CAR site-specifically inserted into TRAC gene • Eliminates random integration, targets tumor antigen

PD-1 KO for enhanced antitumor activity • Potentially better therapeutic index via initial tumor debulking

B2M gene KO • Reduces HLA class I presentation and T cell-mediated rejection

B2M-HLA-E-peptide fusion site-specifically inserted into B2M gene 5 • Blunts NK cell-mediated rejection

1st CAR-T cell with **checkpoint inhibition and** immune cloaking (PD-1 KO, B2M KO + B2M-HLA-E-peptide fusion) to enter the clinic*

Cas12a chRDNA editing for > reduced off-target editing and enhanced insertion rates

Potent, fully human **anti-CLL-1** scFv[†] with a CD28 costimulatory domain

* To company's knowledge [†] Anti-CLL-1-specific scFv exclusively licensed from Memorial Sloan Kettering Cancer Center for allogeneic cell therapies

CB-012 significantly reduced tumor burden and increased overall survival in preclinical studies

- r/r AML that failed standard treatment or MRD-positive AML with lack of effective treatment options plus any of the following criteria:
- Relapsed AML*
- Refractory AML, defined as having not achieved a first CR after 2 cycles of intensive induction chemotherapy[†]
- MRD-positive AML in CR after prior relapse, regardless of risk criteria* - MRD-positive AML in first CR*
- Nonproliferative disease
- Suitable candidate for allogeneic SCT with an identified donor
- \leq 3 prior lines of therapy and \leq 2 allogeneic SCTs

* Per European LeukemiaNet 2022

[†] Such as 7 + 3 or 5 + 2 or similar regimen, 1 cycle of FLAG-Ida or CLIA or CLAG-M or similar purine analogue containing induction, or 2 cycles combining venetoclax with either a hypomethylating agent or low-dose cytarabine [‡]Except in patients with congenital hyperbilirubinemia (e.g., Gilbert syndrome)

AMpLify key exclusion criteria

- Prior treatment with CAR-T cell therapy directed at any target
- Prior treatment with any CLL-1-directed agent
- Acute promyelocytic leukemia
- Rapidly progressive disease
- Metabolically inactive or isolated extramedullary disease
- Diagnosed with or treated for invasive malignancy other than AML, except for malignancy treated with curative intent and with no known active disease present for > 1 year before enrollment
- Prior antitumor therapy received within 14 days (some exceptions are allowed)
- Received any of the following:
- Allogeneic SCT within 100 days before lymphodepletion
- Any drug used for GvHD treatment ≤ 4 weeks before CB-012 infusion - Donor lymphocyte infusion < 30 days prior to lymphodepletion
- Autologous SCT < 6 weeks before lymphodepletion
- Known active CNS involvement or clinical signs of meningeal involvement
- Clinically significant stroke or seizure < 6 months of signing informed consent form
- Seropositive for HIV; active HBV/HCV infection
- Presence of donor-specific (product-specific) anti-HLA antibodies

AMpLify participating sites

AMpLify Phase 1 clinical trial summary

•Allogeneic CAR-T cell therapy is an investigational treatment that may address the unmet needs of r/r AML patients

•CB-012 is an allogeneic anti-CLL-1 CAR-T cell therapy derived from healthy donor T cells and engineered using Cas12a chRDNA technology

•To our knowledge, CB-012 is the first allogeneic CAR-T cell therapy being studied in a clinical trial for r/r AML that is designed to improve antitumor activity through: - Checkpoint disruption via PD-1 knockout to reduce T cell exhaustion and

- An immune cloaking strategy with a B2M knockout and insertion of a B2M-HLA-E fusion protein to blunt immunemediated rejection

•AMpLify is a Phase 1 first-in-human trial investigating the safety and efficacy of CB-012 as a single infusion in patients with r/r AML at clinical sites across the United States

Dose level 1: 25x10⁶ CAR-T cells (enrolling patients)

NCT06128044

* Additional follow-up scheduled for months 13-24 at longer intervals

Planned enrollment: ~70 patients

Contact: clinicaltrials@cariboubio.com

Patient enrollment is ongoing in dose escalation of the AMpLify trial

ABBREVIATIONS

ALT: alanine aminotransferase; AML: acute myeloid leukemia; AST: aspartate aminotransferase; B2M: β2-microglobulin; CAR: chimeric antigen receptor; chRDNA: CRISPR hybrid RNA-DNA; CLAG-M: cladribine, cytarabine, granulocyte colony-stimulating factor, mitoxantrone; CLIA: cladribine, idarubicin, cytarabine; CLL-1: C-type lectin-like molecule-1; CNS: central nervous system; CR: complete remission; ECOG: Eastern Cooperative Oncology Group; FLAG-Ida: fludarabine, cytarabine, granulocyte colony-stimulating factor, idarubicin; GvHD: graft-versus-host disease; HBV: hepatitis B virus; HCV: hepatitis C virus; HIV: human immunodeficiency virus; HLA: human leukocyte antigen; HSPCs: hematopoietic stem cells and progenitor cells; KO: knockout; MRD: measurable residual disease; MTD: maximum tolerated dose; NK: natural killer; PD: pharmacodynamics; PK: pharmacokinetics; RDE: recommended dose for expansion; RP2D: recommended Phase 2 dose; r/r: relapsed/refractory; SCT: stem cell transplantation; **TCR**: T cell receptor; **ULN**: upper limit of normal.

CORRESPONDING AUTHOR

Naval G. Daver, MD (ndaver@mdanderson.org) The University of Texas MD Anderson Cancer Center, Houston, TX

American Society of Clinical Oncology Annual Meeting Hematologic Malignancies–Leukemia, Myelodysplastic Syndromes, and Allotransplant June 3, 2024 - Chicago, IL

Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASCO[®] or the author of this poster

